
A Verilog Designer’s Experience Designing In Esterel

Dan Downs
Esterel EDA Technologies
679 av. Dr. J. Lefebvre

06270 Villeneuve-Loubet, France

www.esterel-eda.com

Copyright c© Esterel EDA Technologies, SAS 2008

March 12, 2008

This document presents some of the real world coding benefits of using Esterel that
might not be obvious in a discussion about Esterel as a design or Electronics Systems Level
(ESL) language. In particular, instead of being an Esterel Language tutorial or presenting
Verilog versus Esterel final code side by side, this document walks through the process of
designing a small control circuit in the two languages. It is about the process of writing
of the code and about how Esterel allows one to remain focused on the behaviour of the
circuit to be designed. It gives an illustration of what Esterel Technologies is talking about
when we say that Esterel code is easier to read and understand and maintain.

1 The Function to be Implemented

Imagine a device used to control someone’s exercise routine. Mainly the exercise is running,
so we will call this device a ”runner controller”, or runner for short. This could be, for
example, a handheld microelectronic Personal Trainer.

The exercise routine is simple. Every morning do 4 laps of: 100 Meters of slow running,
15 seconds of simultaneous jumping and breathing at each step, then finish the lap running
fast.

This example was actually taken from documents about the Esterel language where
the point of the example was to present the Multiform nature of time representation in
Esterel. It is known as ”runner” and it has a long history in Esterel documentation,
appearing first in about 1985. I simply wanted to see how this would look in Verilog, and
this paper presents some of my observations.

2 Beginning the Implementation

As a hardware engineer, when I think about coding this in Verilog (or VHDL) I imme-
diately note the primary inputs and outputs and I see a state machine and three event
counters: one for meters, one for seconds, and one for laps. However when I think about
coding this in Esterel, I write pretty much what the specification says. In the box below

1

2 BEGINNING THE IMPLEMENTATION 2

are the primary inputs and outputs. But for brevity, in the remainder of the document I
will leave off the port list and input/output declarations for both Verilog and Esterel:

input reset , clk ;
input Morning , Second , Meter , Step , Lap ;
output RunSlowly , Jump , Breathe , RunFast ;

Here is the code in Esterel:

every Morning do
abort // 4 laps

loop
abort

sustain RunSlowly
when 100 Meter ;

abort
every Step do

emit {Jump , Breathe}
end every

when 15 Second ;

sustain RunFast
each Lap

when 4 Lap
end every

That’s it for the Esterel code, it is complete and done. And my manager is happy
because it only took 20 minutes to code.

Now before looking at the entire Verilog code, let us look at just the two lines of Esterel
code which create a lap counter:

abort // 4 laps

when 4 Lap

This is what needs to be done in Verilog to capture the same thing:

2 BEGINNING THE IMPLEMENTATION 3

reg [1:0] lap_count ; // Max 4

reg DisableLapCounter ;

// 4 lap counter from !DisableLapCounter

always @ (posedge clk) begin
i f (reset || (DisableLapCounter == 1))begin

lap_count <= 0 ;
end
e l se i f (Lap) begin

lap_count <= lap_count + 1 ;
end

end

RESET_STATE : begin
DisableLapCounter <= 1 ;

...
RUN_SLOWLY : begin

DisableLapCounter <= 0 ;
...

RUN_FAST : begin
e l se i f (Lap) begin

i f (lap_count >= 4) begin
STATE <= AWAIT_MORNING ;
RunFast <= 0 ;

end

parameter RESET_STATE = 0 ;
parameter AWAIT_MORNING = 1 ;
parameter RUN_SLOWLY = 2 ;
parameter JUMP_BREATHE = 3 ;
parameter RUN_FAST = 4 ;

reg [2:0] STATE ;

So I have had to do the following:

• Explicitly create a counter with the right number of bits,

• Create a signal for controlling the counter,

• Create a state machine for controlling that signal,

The first two items have to be done again for each counter in the design.
My first observation is that right away I am putting distance between the function I

am trying to implement and what I am actually doing at the keyboard. The real task is
not about creating counters and state machines, it is about capturing a given behaviour.
So in an important way the explicit coding of these counter and state machine functional
units is a distraction from the task at hand. While I am taking the time to create these
functional blocks I might as well be working on any one of thousands of other designs since
they are not unique to the function to be implemented.

Earlier I said, ”let us look at just the two lines of Esterel code which create a lap
counter”. But in fact there is much more than that going on in the Esterel code. The

2 BEGINNING THE IMPLEMENTATION 4

structure of the Esterel code around and within those two lines implicitly describes a state
machine; the details of which I do not have to concern myself with.

I can parameterize the three counters in this design but I cannot parameterize the
STATE register. It is only after I have sketched a bubble diagram that I can know how
many bits the STATE register has. Again, in the Esterel implementation I never need to
care about this detail.

After making the sketch and knowing the states however, and thinking about how and
when I will start and stop the three counters, I have written the following Verilog code:

2 BEGINNING THE IMPLEMENTATION 5

parameter RESET_STATE = 0 ;
parameter AWAIT_MORNING = 1 ;
parameter RUN_SLOWLY = 2 ;
parameter JUMP_BREATHE = 3 ;
parameter RUN_FAST = 4 ;

reg [2:0] STATE ;

reg [7:0] meter_count ; // Max 100

reg [3:0] JB_time ; // Max 15

reg [1:0] lap_count ; // Max 4

reg RunSlowly ;
reg Enable_JB_timer ;
reg DisableLapCounter ;

// ==

// Timers and counters

// 15 second timer from Enable_JB_timer

always @ (posedge clk) begin
i f (reset || (Enable_JB_timer == 0)) begin

JB_time <= 0 ;
end
e l se i f (Second) begin

JB_time <= JB_time + 1 ;
end

end

// 100 meter counter from RunSlowly

always @ (posedge clk) begin
i f (reset || (RunSlowly == 0)) begin

meter_count <= 0 ;
end
e l se i f (Meter) begin

meter_count <= meter_count + 1 ;
end

end

// 4 lap counter from !DisableLapCounter

always @ (posedge clk) begin
i f (reset || (DisableLapCounter == 1))begin

lap_count <= 0 ;
end
e l se i f (Lap) begin

lap_count <= lap_count + 1 ;
end

end

Notice that I have not even started to code the actual state machine yet. This sort
of preparation work is not necessary in the Esterel version as all the counter and timer
”code” above, plus the state machine, is implicitly described.

3 ON TO THE STATE MACHINE 6

3 On to the State Machine

Now for the actual Verilog state machine controller for runner. Notice that I have added a
comment in the Verilog code as documentation describing the function to be implemented.

// ===

// Main controller State Machine

//

/* Function to be implemented
every Morning do

abort // 4 laps

loop
abort

sustain RunSlowly
when 100 Meter ;

abort
every Step do

emit {Jump , Breathe}
end every

when 15 Second ;

sustain RunFast
each Lap

when 4 Lap
end every
*/
// ==

//

always @ (posedge clk) begin // Main SM

i f (reset) begin
STATE <= RESET_STATE ;

end
e l se

case (STATE)
// --------------------------------------

RESET_STATE : begin
DisableLapCounter <= 1 ;
Enable_JB_timer <= 0 ;

RunSlowly <= 0 ;
RunFast <= 0 ;
Jump <= 0 ;
Breathe <= 0 ;

STATE <= AWAIT_MORNING ;
end

// --------------------------------------

AWAIT_MORNING : begin
DisableLapCounter <= 1 ;
Enable_JB_timer <= 0 ;

i f (Morning) begin

3 ON TO THE STATE MACHINE 7

STATE <= RUN_SLOWLY ;
RunSlowly <= 1 ;

end
e l se begin

STATE <= AWAIT_MORNING ;
end

end

// --------------------------------------

RUN_SLOWLY : begin
DisableLapCounter <= 0 ;
Enable_JB_timer <= 0 ;

i f (Morning) begin
STATE <= RUN_SLOWLY ;

end
e l se i f (meter_count >= 100) begin

STATE <= JUMP_BREATHE ;
RunSlowly <= 0 ;
Jump <= 1 ;
Breathe <= 1 ;

end
e l se begin

STATE <= RUN_SLOWLY ;
end

end

// --------------------------------------

JUMP_BREATHE : begin
DisableLapCounter <= 0 ;
Enable_JB_timer <= 1 ;

i f (Morning) begin
STATE <= RUN_SLOWLY ;
Jump <= 0 ;
Breathe <= 0 ;

end
e l se i f (JB_time == 15) begin

STATE <= RUN_FAST ;
RunFast <= 1 ;
Jump <= 0 ;
Breathe <= 0 ;

end
e l se i f (Step && (JB_time < 15)) begin

STATE <= JUMP_BREATHE ;
Jump <= 1 ;
Breathe <= 1 ;

end
e l se begin

STATE <= JUMP_BREATHE ;
Jump <= 0 ;
Breathe <= 0 ;

end
end

3 ON TO THE STATE MACHINE 8

// --------------------------------------

RUN_FAST : begin
DisableLapCounter <= 0 ;
Enable_JB_timer <= 0 ;

i f (Morning) begin
STATE <= RUN_SLOWLY ;

end
e l se i f (Lap) begin

i f (lap_count >= 4) begin
STATE <= AWAIT_MORNING ;
RunFast <= 0 ;

end
e l se begin

STATE <= RUN_SLOWLY ;
RunSlowly <= 1 ;
RunFast <= 0 ;

end
end
e l se begin

STATE <= RUN_FAST ;
end

end

// --------------------------------------

default : begin
DisableLapCounter <= 0 ;
Enable_JB_timer <= 0 ;

i f (Morning) begin
STATE <= RUN_SLOWLY ;
RunSlowly <= 1 ;

end
e l se begin

STATE <= RESET_STATE ;
end

end

endcase
end // Main SM

So now I have my state machine and the timers and controllers and I can attempt a
compile and simulation. But first, look at what has been done. Creating a state machine
like this is, again, off the main line of what I am actually trying to accomplish. I spent
most of my time observing Verilog syntactic rules and code structuring and copying-and-
pasting and scrolling ... in short, editing and typing. I feel like a typist that knows Verilog,
not a hardware designer. I am beginning to wonder if there is a better, more direct way
to code this.

Even if you have perl scripts or Emacs macros or other methods to lessen the pain
of creating state machines and other regularly used functional blocks in Verilog, the fact
remains that these kind of implementation details do not even have to be considered in
the Esterel implementation. I do not want to make the ”compare the Esterel and Verilog

4 THE LEGAL DEPARTMENT ARRIVES 9

code lengths” argument too strongly here, but in addition to the ”fewer lines means fewer
errors” and ”fewer lines are easier to understand” arguments, we could add that it was
tedious to code that in Verilog. Most of it had little to do with capturing the particular
behaviour of the function of interest and much to do with building generic scaffolding onto
which we could hang the particular behaviour.

Pausing briefly, I will note that the Esterel code:

• directly captures the behaviour desired

• is mostly self commenting

• is shorter

• does not require explicit state machine creation

• creates implied counters automatically

4 The Legal Department Arrives

It is a good thing I paused. I have just been informed of a specification change. The Legal
department says that if the runner controller does not include a cool-down phase then we
are setting ourselves up for a lawsuit. The new specification is Every morning do 4 laps of:
(100 Meters of slow running, 15 seconds of simultaneous jumping and breathing at each
step, then finish the lap running fast) and after the 4 laps walk for 1 lap then stretch for
5 minutes.

Ok I can do that quickly in Esterel. A side-by-side diff of the first version of the Esterel
code versus the second version gives me this:

4 THE LEGAL DEPARTMENT ARRIVES 10

every Morning do every Morning do
abort // 4 laps abort // 4 laps

loop loop
abort abort

sustain RunSlowly sustain RunSlowly
when 100 Meter ; when 100 Meter ;

abort abort
every Step do every Step do

emit {Jump ,Breathe} emit {Jump ,Breathe}
end every end every

when 15 Second ; when 15 Second ;

sustain RunFast sustain RunFast
each Lap each Lap

when 4 Lap when 4 Lap

> abort
> sustain Walk
> when 1 Lap ;
>
> abort
> sustain Stretch
> when 300 Second ;
>

end every end every

The changes are not complicated as they follow in sequence after the exercise routine.
Now in Verilog I first add a WALK and a STRETCH state. That makes 7 states total

so I can leave STATE at 3 bits. I don’t need to add a lap counter, but I’ll add a another
seconds counter. I do need to modify the control of the lap counter however. I copy and
paste twice the last state in the state machine, do some editing, and end up with a new
version. Below is the side by side diff between the two Verilog versions. To keep the main
part of this document shorter however, only the changed lines are shown:

4 THE LEGAL DEPARTMENT ARRIVES 11

> parameter WALK = 5 ;

> parameter STRETCH = 6 ;

> reg [9:0] stretch_time ;// Max 300

--

> reg En_Stretch_timer ;

> reg Walk ;

> reg Stretch ;

--

// 4 lap counter from ! DisableLapCounter | // 5 lap counter from ! DisableLapCounter

> // 300 seconds from En_Stretch_timer

> always @ (posedge clk) begin
> i f (reset || (En_Stretch_timer == 0))

> begin
> stretch_time <= 0 ;

> end
> else i f (Second) begin
> stretch_time <= stretch_time + 1;

> end
> end

--

> En_Stretch_timer <= 0 ;

> Walk <= 0 ;

> Stretch <= 0 ;

> En_Stretch_timer <= 0 ;

STATE <= AWAIT_MORNING ;| STATE <= WALK ;

> Walk <= 0 ;

--

> WALK : begin
> i f (Morning) begin
> STATE <= RUN_SLOWLY ;

> end
> else i f (lap_count == 5) begin
> STATE <= STRETCH ;

> En_Stretch_timer <= 1 ;

> Walk <= 0 ;

> Stretch <= 0 ;

> end
> else begin
> STATE <= WALK ;

> end
> end
> // --------------------------------

> STRETCH : begin
> En_Stretch_timer <= 1 ;

> i f (Morning) begin
> STATE <= RUN_SLOWLY ;

> end
> else i f (stretch_time >= 300)

> begin
> STATE <= AWAIT_MORNING ;

> Stretch <= 0 ;

> end
> else begin
> STATE <= STRETCH ;

> end
> end

There seems to be far more to keep track of in the Verilog code than in the Esterel.
Adding two states required modification all through the code. And this is a very simple
modification to a very simple module.

At this point I can add to my list of observations that in the Esterel code:

• The changes required to update the code follow closely the specification updates.

The reason that the changes to the code were localized and not spread around is that

5 OH NO. HERE COMES THAT MARKETING GUY AGAIN 12

the Esterel code captured the behaviour whereas the Verilog codes an implementation.
With Esterel you have the architecture and the implementation in one.

I am ready to press on and try a compile, but ...

5 Oh No. Here Comes That Marketing Guy Again

It looks like he’s been reading Crosstraining Weekly again. This means another specifica-
tion change I just know it.

And today’s specification is: Every morning do 4 laps of:

(100 Meters of slow running,
(

Odd laps: (15 seconds of simultaneous jumping and breathing at each step),
Even laps: (25 seconds of star jumps),

)
then finish the lap running fast) and after the 4 laps walk for 1 lap then
stretch for 5 minutes

I have pointed out that with the Esterel code I have not had to explicitly create the
counters or timers. But that was because it was not necessary in order to capture the
behaviour of the specification. Looking at the kind of specification change that just came
in I have two options. I can make a lap toggle bit to determine odd or even laps, or I can
predict that tomorrow there will be another change related to the lap count. I’ll assume
the latter, and so now I will explicitly create a lap counter and change the Esterel code
accordingly:

5 OH NO. HERE COMES THAT MARKETING GUY AGAIN 13

> /*

> Upper limit to the Lap count is

> 0 seconds to run 100 meters (faker !)

> (15 + 25)/2 seconds/lap (make them wait)

> 0 seconds to finish lap (exercise cheat!)

> Seconds/day 60*60*24 = 86400 (next Morning)

> is 86400 / ((15+25)/2) = 4320

> */

> signal
> LapCount : value unsigned<4320 > in i t 1

> in

every Morning do every Morning do
> sustain {

> i f (Morning and not pre(Morning)) then
> ?LapCount <= 1

> else
> ?LapCount <= (pre(? LapCount) + 1) i f Lap

> end i f
> }

> ||

abort // 4 laps abort // 4 laps

loop loop
abort abort

sustain RunSlowly sustain RunSlowly

when 100 Meter ; when 100 Meter ;

> i f ((? LapCount mod 2) = 1) then
abort abort

every Step do every Step do
emit {Jump , Breathe} emit {Jump , Breathe}

end every end every
when 15 Second ; when 15 Second ;

> else
> abort
> every Step do
> emit Starjump

> end every
> when 25 Second ;

> end i f ;
>

sustain RunFast sustain RunFast

each Lap each Lap

when 4 Lap ; when 4 Lap ;

abort abort
sustain Walk sustain Walk

when 1 Lap ; when 1 Lap ;

abort abort
sustain Stretch sustain Stretch

when 300 Second ; when 300 Second ;

end every end every
> end signal

Some explanation of Esterel seems necessary at this point. Please refer to the added
code in the box above (just the parts on the right with the ’>’ markers).

The added part in the box below declares a counter, and sets its scope between the
signal and end signal keywords. I think of the first lap as lap number 1, not zero, so I set
it to 1 initially.

5 OH NO. HERE COMES THAT MARKETING GUY AGAIN 14

s ignal
LapCount : value unsigned <4320> i n i t 1
in
...
end s ignal

This part creates a design unit in parallel (using the || operator) with the existing
main code.

sustain {
}
||

This part is the counter control. The two pre operators give the value of a signal in
the previous cycle; so that’s just a convenient way to detect the rising edge of Morning
and reset the counter in the first case, and it is necessary in the second case to prohibit
reading and writing to LapCount in the same cycle in the second case. The ? means ”the
value of” and is there to distinguish the times when you want to know a signal’s value as
opposed to its status (if it is true or false):

// Detect only new Mornings

i f (Morning and not pre(Morning)) then
?LapCount <= 1

e l se
// LapCount =(previous cycle ’s LapCount)+1

?LapCount <= (pre(? LapCount)+1) i f Lap
end i f

This is the logic for checking the even/oddness of the lap. Tomorrow when the new
specification comes in I’ll change it to ”if ?LapCount ¡= NewBehaviourX” (or whatever):

i f ((? LapCount mod 2) = 1) then

And this is the new requested behaviour:

e l se
abort

every Step do
emit Starjump

end every
when 25 Second ;

end i f ;

The comparable Verilog changes are not so straightforward. The Verilog code already
has a Lap counter and since I have direct access to lap count bit 0, I can use that bit to
test for even/oddness. But it is the state machine, again, that I am not looking forward
to editing. I’ve got to tear it up a bit, attending to all the states that transitioned to the
JUMP BREATHE state and add the if test to the new state STARJUMP and etc. It is
not much, but this is the sort of place where bugs creep in. Copying and pasting and
editing to manage the multiple state machine transitions where I need to turn on and off
signals.

Ok so why am I complaining. Isn’t this is part and parcel of the normal ordinary
workday of an HDL designer? Maybe, but it is not part of the ordinary workday of a

5 OH NO. HERE COMES THAT MARKETING GUY AGAIN 15

designer writing in Esterel. In the Esterel code I squeezed in the new behaviour just
where I wanted it without ever thinking about the state machine that will implement it.
In Esterel I focused on capturing the behaviour. For the act of coding in Verilog however,
that editing becomes the main task. In Verilog I instead focused on the construction of a
state machine which captures the behaviour.

Here are the changes required in the Verilog version:

5 OH NO. HERE COMES THAT MARKETING GUY AGAIN 16

parameter RESET_STATE = 0 ; parameter RESET_STATE = 0 ;

parameter AWAIT_MORNING = 1 ; parameter AWAIT_MORNING = 1 ;

parameter RUN_SLOWLY = 2 ; parameter RUN_SLOWLY = 2 ;

parameter JUMP_BREATHE = 3 ; parameter JUMP_BREATHE = 3 ;

parameter RUN_FAST = 4 ; parameter RUN_FAST = 4 ;

parameter WALK = 5 ; parameter WALK = 5 ;

parameter STRETCH = 6 ; parameter STRETCH = 6 ;

> parameter STARJUMP = 7 ;

reg [2:0] STATE ; reg [2:0] STATE ;

reg [7:0] meter_count ; // Max 100 reg [7:0] meter_count ; // Max 100

reg [3:0] JB_time ; // Max 15 | reg [4:0] JB_time ; // Max 25

reg [2:0] lap_count ; // Max 5 reg [2:0] lap_count ; // Max 5

reg [9:0] stretch_time ;// Max 300 reg [9:0] stretch_time ;// Max 300

reg RunSlowly ; reg RunSlowly ;

reg Jump ; reg Jump ;

reg Breathe ; reg Breathe ;

reg RunFast ; reg RunFast ;

reg Enable_JB_timer ; reg Enable_JB_timer ;

reg DisableLapCounter ; reg DisableLapCounter ;

reg En_Stretch_timer ; reg En_Stretch_timer ;

reg Walk ; reg Walk ;

reg Stretch ; reg Stretch ;

> reg Starjump ;

// ====================================== //======================================

// Timers and counters // Timers and counters

--------- NO CHANGE -----------

// ====================================== //======================================

// MAIN Main main // MAIN Main main

// //

always @ (posedge clk) begin // Main SM always @ (posedge clk) begin // Main SM

i f (reset) begin i f (reset) begin
STATE <= RESET_STATE ; STATE <= RESET_STATE ;

end end
else else

case (STATE) case (STATE)

// --------------------------------- //---------------------------------

RESET_STATE : begin RESET_STATE : begin
DisableLapCounter <= 1 ; DisableLapCounter <= 1 ;

Enable_JB_timer <= 0 ; Enable_JB_timer <= 0 ;

En_Stretch_timer <= 0 ; En_Stretch_timer <= 0 ;

RunSlowly <= 0 ; RunSlowly <= 0 ;

RunFast <= 0 ; RunFast <= 0 ;

Jump <= 0 ; Jump <= 0 ;

Breathe <= 0 ; Breathe <= 0 ;

Walk <= 0 ; Walk <= 0 ;

Stretch <= 0 ; Stretch <= 0 ;

> Starjump <= 0 ;

STATE <= AWAIT_MORNING ; STATE <= AWAIT_MORNING ;

end end

// --------------------------------- //---------------------------------

AWAIT_MORNING : begin AWAIT_MORNING : begin
--------- NO CHANGE -----------

// --------------------------------- //---------------------------------

RUN_SLOWLY : begin RUN_SLOWLY : begin
DisableLapCounter <= 0 ; DisableLapCounter <= 0 ;

i f (Morning) begin i f (Morning) begin
STATE <= RUN_SLOWLY ; STATE <= RUN_SLOWLY ;

end end

5 OH NO. HERE COMES THAT MARKETING GUY AGAIN 17

else i f (meter_count >= 100) begin else i f (meter_count >= 100) begin
> i f (lap_count [0] == 0) begin

STATE <= JUMP_BREATHE ; STATE <= JUMP_BREATHE ;

RunSlowly <= 0 ; RunSlowly <= 0 ;

Jump <= 1 ; Jump <= 1 ;

Breathe <= 1 ; Breathe <= 1 ;

> end
> else begin
> STATE <= STARJUMP ;

> RunSlowly <= 0 ;

> Starjump <= 1 ;

> end
end end
else begin else begin

STATE <= RUN_SLOWLY ; STATE <= RUN_SLOWLY ;

end end
end end

// --------------------------------- //---------------------------------

JUMP_BREATHE : begin JUMP_BREATHE : begin
--------- NO CHANGE -----------

// --------------------------------- //---------------------------------

> STARJUMP : begin
> Enable_JB_timer <= 1 ;

>

> i f (Morning) begin
> STATE <= RUN_SLOWLY ;

> Jump <= 0 ;

> Breathe <= 0 ;

> end
> else i f (Lap) begin
> STATE <= RUN_SLOWLY ;

> Enable_JB_timer <= 0 ;

> Starjump <= 0 ;

> end
> else i f (JB_time >= 25) begin
> STATE <= RUN_FAST ;

> RunFast <= 1 ;

> Starjump <= 0 ;

> end
> else i f (Step) begin
> STATE <= STARJUMP ;

> Starjump <= 1 ;

> end
> else begin
> STATE <= STARJUMP ;

> Starjump <= 0 ;

> end
> end
>

> // ---------------------------------

RUN_FAST : begin RUN_FAST : begin
--------- NO CHANGE -----------

// --------------------------------- //---------------------------------

WALK : begin WALK : begin
--------- NO CHANGE -----------

// --------------------------------- //---------------------------------

STRETCH : begin STRETCH : begin
--------- NO CHANGE -----------

// --------------------------------- //---------------------------------

default : begin default : begin
--------- NO CHANGE -----------

endcase endcase

end // Main SM end // Main SM

6 TOMORROW INDEED BRINGS A NEW SPECIFICATION CHANGE 18

6 Tomorrow Indeed Brings A New Specification Change

From what I have presented above there may not seem much to complain about. But this
is a very, very simple design which has no interaction with other control logic as it would
in a real product design. All the arguments for creating unambiguous, clear and easy
to understand code become increasingly stronger when the design becomes increasingly
complex.

And as I predicted, today the Personal Trainer device specification changed. Now it
is going to be used on a par course. The original middle part of the runner’s routine,
the Jump and Breathe section, will have any one of 19 different routines of various sorts
and times. This means that in the Verilog version I will have a greatly complicated state
machine, or more sensibly, I will create a separate state machines for those routines. I will
have to add control logic to coordinate the two state machines also. I am not going to
do this exercise. But I will show the one line Esterel solution to manage the overhead of
state machine to state machine coordination:

every Morning do
abort // 4 laps

loop
abort

sustain RunSlowly
when 100 Meter ;

abort
run ParRoutine // This line here.

when ParRoutineComplete ;

sustain RunFast
each Lap

when 4 Lap

abort
sustain Walk
when 1 Lap ;

abort
sustain Stretch
when 300 Second ;

end every

In a separate file I can describe the par course routines. The module name will be
ParRoutine. That run ParRoutine line will effectively embed the ParRoutine module
controller inside the runner. I will not worry, as with an HDL construction, about creating
specific signals to enable and/or start or stop the ParRoutine state machine or in any other
way coordinate its activities with the main state machine.

7 In Conclusion

When writing the code in Esterel I let the desired behaviour drive the coding. In Verilog,
I let the Verilog HDL itself drive the coding. So I’ve decided what I’ll do for future

7 IN CONCLUSION 19

designs. Since I always draw out bubble diagrams and/or write pseudocode in an effort to
turn the paper specification into something implementable, now I will always rewrite the
specification in Esterel as a first step. If it is a datapath dominated design, or if the design
has trivial control requirements, I may choose to implement that design, or parts of it, in
Verilog. But if it is a control dominated design, or has complex control requirements, then
I’ll do the implementation in Esterel. The benefit of the latter case is, of course, that the
rewritten specification is the implementation. So then I’m done and I can move on to the
testing phase.

