
An Ethernet (802.3) MAC Receiver In Esterel

Esterel EDA Technologies
679 av. Dr. J. Lefebvre

06270 Villeneuve-Loubet, France

www.esterel-eda.com

Copyright c© Esterel EDA Technologies, SAS 2007

February 13, 2008

This is a companion document to the Esterel Studio project EthernetMACreceiver
available on the Esterel EDA Technologies web site. It describes particulars of the Esterel
Studio implementation of the design and provides descriptions of each Esterel Studio
configurations and the ”self documenting” stimulus files which accompany the project.

Below is a reference diagram showing how the MAC receiver fits into a system. For
those not already familiar with the Ethernet protocol at the MAC layer there is an ap-
pendix with a brief description it.

The diagram shows the ISO seven layer reference model on the left. On the right is
a block diagram of the hardware for the two layers which are of concern for this design.

1

2

Note that the specific inputs and outputs are not part of the ISO specification. For this
design project we are assuming a PHY device of a particular kind and we are assuming
that certain types of outputs are required from the MAC ... your design needs may differ.

Briefly, at the top of the ISO model is the Applications layer; an email client for
example. At that layer it is not important for the application to know nor care about
how its message gets sent; whether or not it is sent in pieces, how error checking is done,
if it sent by wire or wireless, etc. In this layered model messages are sent and received
successfully provided that each layer communicates to its neighbors according to protocol.

So the PHY’s responsibility is mainly turning activity on the media into well behaved
digital signals. And the MAC monitors these signals and reports up to the next level if it
found a packet amongst the activity, and reports some status about the packet. Just as
the MAC level sits above the PHY and continuously monitors the PHY outputs, so too
must the module which instantiates this MAC receiver continuously monitor the receiver’s
outputs.

The specifications for this particular receiver are:

1. provide and indication via the signal rxing that the receiver is acting on the PHY’s
outputs.

2. extract the Destination Address and present it in a 48 bit register,

3. extract the Source Address and present it in a 48 bit register,

4. extract all data and present it as it arrives on an 8-bit port, OutByte,

5. provide the following status/result outputs:

• runtFrame : if, after the start of the frame, the en signal is deasserted before
the minimum frame size arrives.

• giantFrame : if, after the start of the frame, the en signal is NOT deasserted
at or before the maximum frame size arrives.

• chksumok : Frame Check Sum (FCS) == computed CRC on en deassertion.

• chksumbad : the frame is within the right length, but shame about the CRC.

• ok : the frame is within the right length and the CRC checks out ok.

• SFDbailing : asserted every time the receiver is scanning for the SFD and
receives an unexpected value or early end of transmission (en deassert).

• bailedDueToCollision : reception was in progress but a late collision occurred.

1 IMPLEMENTATION DETAILS 3

1 Implementation Details

This section describes the main features of the design and details of their implementation.

1.1 module EthernetMACreceiver, the top level

Here is a fragment of the top level of the design:

module EthernetMACreceiver :
...
loop

weak abort
sustain rxing i f en
||
run MAC_rx_SFD // emits sfddetected , SDFbailing

;
{
run MAC_rx_DISS // Awaits sfddetected , then extracts

// the DA, SA, and payload.

// emits giant , runtFrame

||
run MAC_rx_CRC // Awaits sfddetected , then starts CRC.

// emits chksumok , chksumbad

}
when

case (giant) do await immediate not en ;
emit giantFrame

case (collision) do await immediate not en ;
emit bailedDueToCollision

case (chksumbad or runtFrame or SFDbailing) do nothing
case (chksumok) do emit ok

end abort
;
// After each transmission all devices must wait the IFS time

emit assert END_OF_EN = not en;
await IFStimeInTicks t ick

end loop

The top level of the design places three sub modules in parallel, although the MAC rx DISS
and MAC rx CRC modules wait on a signal from the MAC rx SFD before commencing
operation. This signal is sfddetected, and the conditions for its assertion are simple:
the en signal is asserted with no collisions the correct Start of Frame Delimiter pattern
appears on rxd. Thereafter the receiver collects, and checks, data.

While there is a single simple entry condition, there are a number of exit conditions,
and different designs may call for different priorities and different status indications from
the receiver. In this design, the receiver presents the status outputs for only one cycle
following the deassertion of en. But the signals could just as well be held until cleared by
a controlling device, or held until the beginning of the next frame.

All three of the sub modules terminate on the same conditions shown in the case
statements. The case statements are processed in order, highest to lowest priority. Here
is a line by line explanation:

case (giant) do await immediate not en ; emit giantFrame

1 IMPLEMENTATION DETAILS 4

giant is emitted by MAC_rx_DISS the cycle that the number of bits received exceeds the
maximum frame length. Being a giant implies that the en input has not been deasserted.
In order to provide a consistent interface to the controlling logic which expects status to
be available the cycle following the deassertion of en, the emit giantFrame statement is
held off until en does finally deassert. It giant frames are to be allowed, perhaps if this
design was used in a network protocol analyzer, a more promiscuous and error tolerant
behaviour might be more appropriate. In that case the upper level should not abort on
giant.

case (collision) do await immediate not en ; emit bailedDueToCollision
Similar to the giantFrame situation, a collision can come at any time, and therefore

the receiver must save the collision notification until en deasserts.
case (chksumbad or runtFrame or SFDbailing) do nothing
The signals above are all primary outputs. Their very assertion is enough and there is

nothing more to be done.
case (chksumok) do emit ok
Finally, if there were no problems, emit ok. Note that all these error conditions take

priority over ok. This is important since, for example, it is possible to receive a runt frame
that has a correct checksum. Simultaneous runtFrame and chksumok should not allow ok
to be asserted.

Note that it is ultimately the deassertion of en that transfers control to the statement
await IFStimeInTicks tick. As described in the appendix, the clock that this MAC
receiver design is running off is derived from the PHY and we do not assume that the
received clock rxc is continuous clock OR that it may come and go with the presence or
absence of the bitstream. By assuming only a single rxc following the deassertion of en
and using that deassertion to restart the loop, the receiver is prepared for either situation.

A note on the signal rxing: An indication that the receiver is in operation is primarily
of interest to a companion transmitter. A transmitter can itself monitor the PHY outputs
and determine when the line is open to attempt transmission, or it can utilize circuitry
in the receiver. In this design, rxing is merely an echo of en, but it could be changed to
include, for example, the receiver’s wait on the IFStime.

1 IMPLEMENTATION DETAILS 5

1.2 module MAC rx SFD, Detecting the Start of Frame

Below is the body of the MAC rx SFD module.

await en and not pre(en) ;
weak abort

loop
weak abort // weak because ’x’ must assert to exit the block

await immediate rxd ; pause ; // Got first 1

emit preamblerestart i f rxd ; pause ; // expecting 0

emit preamblerestart i f not rxd ; pause ; // expecting 1

emit preamblerestart i f rxd ; pause ; // expecting 0

emit preamblerestart i f not rxd ; pause ; // expecting 1

emit preamblerestart i f rxd ; pause ; // expecting 0

emit preamblerestart i f not rxd ; pause ; // expecting 1

loop
emit sfddetected i f rxd ; pause ; // 1 for SFD or

// 0 to continue

// the preamble.

emit preamblerestart i f not rxd ; pause ;// expecting 1

end loop
when preamblerestart

end loop
when

case (not en) do emit SFDbailing
case (collision) do nothing
case (sfddetected) do nothing // This is the normal out

end abort ;

The purpose of this module is to indicate to the other modules that the Start of Frame
Delimiter has been detected. It must then ”turn itself off” since if it continued to monitor
the incoming bitstream it might continue to report sfddetected every time the 10101011
SFD pattern happened to passed by in the data stream. The when ... case (x) provides
the exit condition for the weak abort statement.

The case (collision) do nothing does nothing because the EthernetMACreceiver
module above causes this sub module to abort on collision. So the collision case here is
a placeholder. If this design was used as a simple receiver then it should have such
conservative behaviour. But if this design was used in a network protocol analyzer, a
more promiscuous and error tolerant behaviour might be more appropriate. In that case
the upper level abort on collision could be removed. There are in fact a number of
do nothing statements in this design and they are simply placeholders for more elaborate
behaviour.

1 IMPLEMENTATION DETAILS 6

1.3 module MAC rx DISS, Dissassembling the Frame

The code fragment below shows only the main control path of the MAC rx DISS module.
The section replaced with the comment ”//data collection” is uncomplicated and has been
removed to highlight the control flow. However the entire module is in the appendix.

The control is: begin on the cycle following sfddetected and each clock thereafter
do ”data collection” and shift in rxd until en deassertion. If six bytes have been re-
ceived, assert and hold DAValid, if six more are received, assert and hold SAValid,
if too many bits have been received, assert giant, and if too few, assert runtFrame.
Note that this module will abort if en deasserts as well if giant is asserted (See the
module EthernetMACreceiver, the top level sub section for details).

await sfddetected ;
// The very NEXT tick after sfddetected is asserted will be

// bit 0 of the first byte of Destination Address.

abort
{

loop
emit next ?rcvdbyte[assert <8>(? bitcount)] <= rxd ;
pause ;

// data collection

end loop
||
sustain {

next DAValid i f DAValid or ?bytecount = 6,
next SAValid i f SAValid or ?bytecount = 12,

next ?allbitcount <= assert <GIANT_BITS +1>(? allbitcount +1),
giant i f ?allbitcount > GIANT_BITS

}
} when not en
;
emit runtFrame i f ?allbitcount < RUNT_BITS ;

Note that this module emits giant, causing an abort in the higher module. Also note
that the receiver cannot determine if the frame is a runt until after en deasserts; hence
the final line in the code above.

1.4 module MAC rx CRC, Checking the Checksum

This module consists of two sections operating in parallel; computing the CRC, and align-
ing the incoming FCS for comparison the computed CRC. The entire module can be found
in the appendix. The control is trivial, wait for sfddetected and run continuously until the
runmodule is terminated from above (Again, see the module EthernetMACreceiver, the top level
sub section for details).

2 THE ”SELF DOCUMENTING” STIMULUS FILES 7

2 The ”Self Documenting” Stimulus Files

The Esterel Studio project comes with twelve stimulus files. The first ten stimulus files:

helloworld.esi
misaligned_7bit.esi misaligned_1bit.esi misaligned.esi
onebitcorrupt.esi short1bit.esi toofewbytes.esi
onebittoobig.esi giant.esi collision.esi

are partly self explanatory by name, but the expected result is also coded in ASCII in the
frame itself. If these stimulus files are run and the format ASCII is chosen in the waveform
viewer for the OutByte bus then the expected behaviour can be read directly. Briefly,

• helloworld.esi chksumok, and is the only one which asserts ”ok”.

• toofewbytes.esi has a correct checksum, but is a runt.

• giant.esi has a correct checksum, but is a giant.

• short1bit.esi will be a misaligned (chksumbad), runt not reported.

• collision.esi late collision, assert bailedDueToCollision on en-¿ 0.

• onebitcorrupt.esi correct in size and alignment, but chksumbad.

• onebittoobig.esi giant, will be a misaligned (chksumbad) not reported.

• misaligned_7bit.esi chksumbad due to having 1 bit short of a byte.

• misaligned_1bit.esi chksumbad due to having 7 bits short of a byte.

• misaligned.esi chksumbad due to having 4 bits short of a byte.

The remaining two:

soferror.esi en_deassertonpreamble.esi

have errors early in the transmission. en_deassertonpreamble.esi, has a corrupt pream-
ble, which in itself doesn’t stop the MAC_rx_SFD module from searching for a real SFD.
But en is deasserted before that time which causes the assertion of SFDbailing.

The file soferror.esi begins with the bit pattern 1010101, but then receives a 0, and
so fails to produce a correct SFD. The receiver continues to search for the 10101011 SFD
pattern and happens to find one further on in the data stream. As expected, the computed
CRC and FCS do not match. So a chksumbad is asserted. Also, because the ”false” SFD
was detected late, this frame also is reported as a runt.

3 CONFIGURATIONS 8

3 Configurations

3.1 Formal Verification

For formal verification a new hierarchical layer is added in order to include the MAC_rx_CHECKERS
module. That module contains three assertions:

assert CRC_OUTPUTS = chksumbad # chksumok,
assert SIZE_OUTPUTS = runtFrame # giantFrame,
assert NO_MIXED_MSSG = ok => not (chksumbad or giantFrame or runtFrame)

which are derived from the specification in the appendix. MAC_rx_CHECKERS also includes
six constraints on en and collision to prohibit the formal verification engine from cre-
ating impossible counter examples. There is also an esi file which can be used to push
the design towards the end of a frame and better check termination behaviour with giant
frames.

3.2 HDL Code Generation

The Sim configuration can also be used for code generation. The design as is can be
compiled as ”Monolithic monoclock” or as ”Modular monoclock” provided that the three
sub modules MAC_rx_SFD, MAC_rx_DISS, and MAC_rx_CRC have ”No modular generation”
selected as the ”Modular HDL Generation Kind”. Selecting ”As top level module” as the
”Modular HDL Generation Kind” will produce an error message such as the one shown
below:

Error-ESTEREL(stn)-1: Module MAC_rx_SFD cannot be used as a toplevel
submodule since it can terminate

As described in the Implementation Details section, the three run modules can be
terminated from the top level. In order to manage this control, the compiler adds control
signals. Because these signals are not part of the specified input and outputs of the
submodule, they cannot generate them as independent ”top level” modules.

A REDUCED 802.3 MAC RECEIVER SPECIFICATION 9

A Reduced 802.3 MAC Receiver Specification

Ethernet traffic is transmitted one Frame at a time as a serial bitstream. The physical
connection to the transmission medium, be it wired or wireless RF or IR, is at what is
called the Physical layer (the PHY). Practically speaking, the PHY receiver device converts
this bitstream into well behaved digital signals. These signals are provided to the next
layer, the Media Access Control (MAC) layer, where this design module comes in.

The exact nature of those signals and their timing are dependent on the particular
PHY chip used, but for the purpose of this design we assume that the PHY presents to
this MAC receiver module the four single bit signals:

rxc,
rxd,
en,
collision.

rxc is the received clock.
rxd is the received data. It is sampled on all rxc rising edges while en is asserted.
en is the enable and indicates that the rxd signal is valid.
collision, which indicates that although there is a signal on the line the received

data is not valid, which is probably due to multiple transmitters active simultaneously. If
collision is asserted the MAC receiver must wait for the deassertion of en and return
to listening for the next data frame (next assertion of en).

The primary job of the MAC receiver is to extract from those signals the data portion
of the Frame. (The ”data portion” is everything from the Destination address to the end
of the Payload. See below.) Because it cannot be guaranteed that the data received is
without error, the MAC receiver must also provide some error checking.

So in the main, the MAC receiver is a serial to parallel converter, with error checking.
The Frame has the following fields with the sizes shown:

+--+
|7 bytes |1 byte| 6 bytes | 6 bytes |2 bytes|46-1500 bytes|4 bytes|
+--------+------+----------------+-----------+-------+-------------+-------+
|Preamble| SFD |Destination Addr|Source Addr| Type | Payload | FCS |
+--+
^ ^
| |
+-------- First bit sent. Last bit sent. --------+

SFD is Start of Frame Delimiter. It is the bit pattern 10101011. The very next bit after
the SFD is the first bit of the Destination Address (DA).

All data following the final bit of the SFD up to the first bit of the FCS are transmitted
BYTE wise, LSB to MSB. So if one is sending a payload of ”Hello, World!”, that will
appear on OutByte as:

| 48 | 65 | 6C | 6C | 6F | 2C | 57 | 6F | 72 | 6C | 64 | 21 |
but it will appear on the bitstream as:
| 12 | A6 | 36 | 36 | F6 | 34 | EA | F6 | 4E | 36 | 26 | 84 |

FCS is Frame CheckSum. The MAC receiver module will calculate a CRC from the first
bit of the Destination Address to the last bit of the payload. It is the same CRC algorithm

A REDUCED 802.3 MAC RECEIVER SPECIFICATION 10

that was used to compute the FCS, so the last 4 bytes which contain the transmitted FCS
must match the computed CRC. The FCS is transmitted bit 31 down to bit 0, not byte
by reversed byte as with the rest of the frame.

Following is a list of the assumptions about the behaviour of the PHY ”device” that
this MAC receiver module receives input from.

The clock that this MAC receiver design is running off is derived from the PHY and
that the PHY has synchronized rxd to the receiver’s clock. But importantly, we assume
that the received clock, rxc, may be a continuous clock from the PHY chip, OR it may
come and go with the presence or absence of the bitstream.

For the purpose of this design, this does not matter. rxc in the input clock and is
always well behaved (no short pulses, no changing frequency, etc) with the exception that,
while en is inactive, rxc may be held low for long periods of time.

The PHY’s relationship between rxc and en are as follows:

________________ ____________________
en ____________/ ~~~~~~~~ ________

____ ____ ____ ___ ____ ____ ___
rxc ____/ ____/ ____~~~~~~~~ ____/ ____/ ____/

^ ^ ^
| | |

rxd first valid here -+ | |
Last bit of the 32 bit FCS -------------------------------+ |
The PHY guarantees sending at least one clock after en deassertion -+

In summary, at a minimum this MAC layer must continuously monitor the four signals
from the PHY and extract data and perform the following checks that should be performed:

1. the frame must be at least as long as the specified minimum frame length,

2. the frame must be no longer than the specified maximum frame length,

3. the frame must contain an integer number of bytes,

4. the receiver should generate a Cyclic Redundancy Check (CRC) and compare it to
the incoming frame’s Frame CheckSum (FCS).

5. The receiver should also detect collisions and failures in the SFD and subsequently
wait for the en signal to be deasserted then await the reassertion of en.

NOTE: If the output OutByte is displayed in ASCII format in a waveform viewer, the
received frame will be human readable (If it was sent as human readable that is).

NOTE: To make testing easier, the maximum and minimum size frames are greatly
restricted to a range between 31 and 51 bytes inclusive. The InterFrame Spacing (IFS)
which is specified to be 9.6 usec at 10 M bits/sec is reduced to 10 clock ticks.

A MODULE MAC RX DISS, DISSASSEMBLING THE FRAME 11

A module MAC rx DISS, Dissassembling the Frame

await sfddetected ;
// The very NEXT tick after sfddetected is asserted will be

// bit 0 of the first byte of Destination Address.

abort
{

loop
emit next ?rcvdbyte[assert <8>(? bitcount)] <= rxd ;
pause ;
switch ?bitcount

case 7 do
emit next {

?bitcount <= 0,
DataOutValid , // Capture data on byte boundaries.

?DataOut <= ?rcvdbyte ,
?bytecount <= assert <(GIANT_BYTES)+1>(? bytecount + 1)

}
case 0 do

emit next {
?bitcount <= assert <8>(? bitcount + 1),

?DA [40..47] <= ?rcvdbyte i f ?bytecount = 1,
?DA [32..39] <= ?rcvdbyte i f ?bytecount = 2,
?DA [24..31] <= ?rcvdbyte i f ?bytecount = 3,
?DA [16..23] <= ?rcvdbyte i f ?bytecount = 4,
?DA [8..15] <= ?rcvdbyte i f ?bytecount = 5,
?DA [0..7] <= ?rcvdbyte i f ?bytecount = 6,

?SA [40..47] <= ?rcvdbyte i f ?bytecount = 7,
?SA [32..39] <= ?rcvdbyte i f ?bytecount = 8,
?SA [24..31] <= ?rcvdbyte i f ?bytecount = 9,
?SA [16..23] <= ?rcvdbyte i f ?bytecount = 10,
?SA [8..15] <= ?rcvdbyte i f ?bytecount = 11,
?SA [0..7] <= ?rcvdbyte i f ?bytecount = 12

}
default do

emit next ?bitcount <= assert <8>(? bitcount + 1)
end switch

end loop
||
sustain {

next DAValid i f DAValid or ?bytecount = 6,
next SAValid i f SAValid or ?bytecount = 12,

next ?allbitcount <= assert <GIANT_BITS +1>(? allbitcount +1),
giant i f ?allbitcount > GIANT_BITS

}
} when not en
;
emit runtFrame i f ?allbitcount < RUNT_BITS ;

A MODULE MAC RX CRC, CHECKING THE CHECKSUM 12

A module MAC rx CRC, Checking the Checksum

await sfddetected ;
{ // sfddetected

loop // aligning the FCS data BEGIN

emit next ?LastByte[assert <8>(? bitcount)] <= rxd ;
pause ;
switch ?bitcount

case 7 do
emit next ?bitcount <= 0

case 0 do
emit next {

?bitcount <= assert <8>(? bitcount + 1),

?Last4Bytes [8..31] <= ?Last4Bytes [0..23] ,
?Last4Bytes [0..7] <= reverse (? LastByte),

/* To end the CRC , since the frame length is unknown , the CRC
* cannot be computed as the bits arrive or the Computed CRC
* will include the incoming FCS in the computation. The
* solution here is to delay the start of the CRC computation
* by the FCS length such that the received CRC and computed
* CRC align at the final bit .
*/

?LastCRC5 <= ?LastCRC4 ,
?LastCRC4 <= ?LastCRC3 ,
?LastCRC3 <= ?LastCRC2 ,
?LastCRC2 <= ?LastCRC1 ,
?LastCRC1 <= ?ComputedCRC

}
default do

emit next ?bitcount <= assert <8>(? bitcount + 1)
end switch

end loop // aligning the FCS data END

||
{
// computing the CRC BEGIN

pause ;
/* This delay is here because the SFD statement terminates
* immediately , meaning that this process is entered while the
* final start of frame delimiter bit is present. The very NEXT
* t ick will be bit 0 of the first byte of Destination Address.
* The CRC needs to start on that t ick .
*/

abort
sustain x32 <= ?ComputedCRC [31] xor rxd
||
loop

/*
* CRC32 is:
* 2^32 + 2^26 + 2^23 + 2^22 + 2^16 + 2^12 + 2^11 + 2^10 + 2^8 +
* 2^7 + 2^5 + 2^4 + 2^2 + 2^1 + 1
*/

A MODULE MAC RX CRC, CHECKING THE CHECKSUM 13

emit next {
?ComputedCRC [27..31] <= ?ComputedCRC [26..30] ,
?ComputedCRC [26] <= ?ComputedCRC [25] xor x32 ,
?ComputedCRC [24..25] <= ?ComputedCRC [23..24] ,
?ComputedCRC [23] <= ?ComputedCRC [22] xor x32 ,
?ComputedCRC [22] <= ?ComputedCRC [21] xor x32 ,
?ComputedCRC [17..21] <= ?ComputedCRC [16..20] ,
?ComputedCRC [16] <= ?ComputedCRC [15] xor x32 ,
?ComputedCRC [13..15] <= ?ComputedCRC [12..14] ,
?ComputedCRC [12] <= ?ComputedCRC [11] xor x32 ,
?ComputedCRC [11] <= ?ComputedCRC [10] xor x32 ,
?ComputedCRC [10] <= ?ComputedCRC [9] xor x32 ,
?ComputedCRC [9] <= ?ComputedCRC [8],
?ComputedCRC [8] <= ?ComputedCRC [7] xor x32 ,
?ComputedCRC [7] <= ?ComputedCRC [6] xor x32 ,
?ComputedCRC [6] <= ?ComputedCRC [5],
?ComputedCRC [5] <= ?ComputedCRC [4] xor x32 ,
?ComputedCRC [4] <= ?ComputedCRC [3] xor x32 ,
?ComputedCRC [3] <= ?ComputedCRC [2],
?ComputedCRC [2] <= ?ComputedCRC [1] xor x32 ,
?ComputedCRC [1] <= ?ComputedCRC [0] xor x32 ,
?ComputedCRC [0] <= rxd xor ?ComputedCRC [31]

} ;
pause ;

end loop ;
when not en ;

emit { // Always emit one or the other chksum signals

i f ((? LastCRC5 =? Last4Bytes)and(? bitcount =1)) then chksumok
e l se chksumbad
end i f

}
// computing the CRC END

}
} // sfddetected

