
Layering sequences for fun and profit
http://www.yanthia.com/online/projlets/SequenceLayering/index.html

 Dan Downs OstensiblyMyID@gmail.com Scottsdale, AZ, November 2016

Regarding “odd little things”, the
only non-standard part of this is
the mechanism for passing a handle
in an agent to the downstream agent
so that their sequencers can talk
directly to one another without a
driver component.

This is done with the connect
function in the box on the upper
right, one for each non-driver
connected agent, and called in the
environment as shown in the box
to the lower right.

program
code

d m
s ca

CPU XBRM

S1
S2 S3

S4

S5

S7S8
S9 S6

PCU

p1

P

p2
p3

p4

p5
p6p7

SCU S1

s ca
s ca

s ca

d m
s ca

Does two translations:
1) pass-through of the port specific
interrupt line from XBAR to CPU,

2) turns a 32-bit AXI access into
CPU friendly reads.

Does two translations:
1) pass-through of the port specific
interrupt line from the PCU to XBAR,

2) turns a 16-bit APB access
into a 32-bit AXI access.

Does two translations:
1) Turns a ready signal from the SCU
into a port specific interrupt line for the
PCU,

2) turns serial data transmission with
parity from the SCU into a 16-bit value
and an APB PSLVERR.

 class CPU_XBR_PCU_SCU_env extends uvm_env;
 ...
 function void connect_phase(uvm_phase phase);
 cpu_xbr_agent.connect_to_XBR_PCU_xlator_agent(xbr_pcu_agent);
 xbr_pcu_agent.connect_to_PCU_SCU_xlator_agent(pcu_scu_agent);
 pcu_scu_agent.connect_to_SCU_agent(scu_agent);
 endfunction
 ...

 class XBR_PCU_xlator_agent extends uvm_component#(SCU_txn);
 ...
 PCU_SCU_xlator_agent pcu_agent ;
 ...
 function void connect_to_PCU_SCU_xlator_agent(PCU_SCU_xlator_agent c);
 pcu_agent = c;
 endfunction

CPU
sequences

CPU_XBR
xlator
sequences

XBR_PCU
xlator
sequences

SCU
sequences

PCU_SCU
xlator
sequences

XBR
sequences

PCU
sequences

CPU function:
CPU <--> AXI

 translator
 sequence

XBAR function:
AXI <--> APB

 translator
 sequence

PCU function:
APB <--> serial

 translator
 sequence

Purpose:
The layered sequences mechanism a technique to add to one's UVM toolkit. The purpose of this small
project is to see what is involved in implementing a layered sequence in a testbench and work out any
odd little things that might come up. There are a dozen layered sequence examples out there on the
internet using layered protocols. I will do something different.
The particular problem to solve:
I want to communicate from the C-code program level running on the CPU in the block diagram below with
the sensor S1 via the SCU, but without any of the CPU, XBAR, or PCU blocks of the design being available
in hardware yet. I could bolt a single-use test harness to the SCU of course. Or I can put in place a
series of translator components that can be replaced by real RTL as the design develops. I chose the
latter. Layered sequences (or sequencers) are now required.
In the rather busy diagram below, the violet is the system under design, the dark violet shows the only
component ready for use, the SCU, while the light violet are components not yet ready and which are
functionally “replaced” by sequencer-hopping translator sequences.
The translator sequences are in blue, and unit-based agents are represented by these ->
The three callouts explain what the specific translations do.

The SCU interface is shown as an orange square:

